AD=A070 202 WISCONSIN UNIV~MADISON MATHEMATICS RESEARCH CENTER

SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER PRESERVING MAPPIN=<ETC(
MAR 79 M 6 CRANDALL, L TARTAR v i

F/é 12/1

DAAG29=75=C=0024
UNCLASSIFIED MRC=TSR=1943 - L
M—';' DTO20:

END

DATE
FILMED

1-79




Tvam, v g

DOC FiLE C

OPY:

March 1979

(Received January 29, 1979)

. 7 & = Gl -

MRC Technical Summary Report #1943

SOME RELATIONS BETWEEN NONEXPANSIVE
AND ORDER PRESERVING MAPPINGS

Michael G. Crandall and Luc Tartar

Mathematics Research Center -
University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706

Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park N
North Carolina 27709 ? .




-

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER
PRESERVING MAPPINGS
Michael G. Crandall and Luc Tartar

Technical Summary Report #1943
March 1979

ABSTRACT
It is shown that nonlinear operators which preserve the integral
are order preserving if and only if they are nonexpansive in Ll and
that those which commute with translation by a constant are order

. . . : 2 - Al .
preserving if and only if they are nonexpansive in L . Examples are

presented involving partial differential equations, difference approxima-

tions and rearrangements.
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SIGNIFICANCE AND EXPLANATION
Let T be an "operator" which takes the initial-value of an initial-
. value problem in differential equations to the value of the solution at a
fixed later time t > 0. If the equations are nonlinear so will T be.

Among the desirable properties T may have are order preservation (which

says the solution is an increasing function of the initial data) and Lipschitz
continuity (which is a quantitative statement about the continuity of the
solution as a function of the initial data). If 1 1is a Lipschitz constant
for T we say T 1is nonexpansive.

In this note we show that T is order preserving if and only if it is
nonexpansive provided certain other properties are present. In particular,
if T preserves an integral (which physically corresponds to things like the
conservation of mass or energy) then T 1s order preserving if and only if
it is nonexpansive in the associated integral sense. Analogous things are
proved for the uniform norm. These observations reduce the work needed to
verify all three properties when they are simultaneously present and
enhances ones ability to recognize when these properties are present (in, for

example, difference approximations). Examples are given.
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SOME RELATIONS BETWEEN NONEXPANSIVE AND ORDER PRESERVING MAFPINGS

Michael G. Crandall and Luc Tartar
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Introduction.

Let { be a measure space equipped with a nonnegative measure. We write f f
Q

for the integral over Q of f € Ll(Q). Some years ago we observed, in a discussion

g St

of the Carleman equations (see Section 3), that if T 1is a mapping in L' (@) which

conserves the integral, i.e.,

g e it e 48

(1 [rie)y = [ £
Q Q

then T is nonexpansive if and only if it is order preserving. To be more precise,

let fvg = max(f,g) and r* = rv0. We have:

Proposition 1: Let C (e LI(Q) have the property that f,g € C implies fvg € C.

}, let T : C » Ll(ﬂ) satisfy (1) for f € C. Then the following three properties of T
f are equivalent:
(a) f,ge C and f < g a.e. implies T(f) < T(g) a.e., !
E ‘ (b) f tECE) - T(q))‘ < J (£ ~ q)' for £,9¢ C;
Y] Q

(@ [ |ree) -r9)) <[ |f-g] for f,g€ .
sl Q

| A

Recently, for all its simplicity, Proposition 1 was usef:' in the study of

difference approximations of scalar conservation laws ([2]) so we have decided to

present it here together with the parallel result for L (3): *
Proposition 2: Let C C Lm(n) have the property that f,g € ¢ implies

+ Y
£+ |la- 6| € C. Let T :C=1L (R) satisfy:

£y

L (&)
1) L xe R*, f¢«C and £+ e C; then T(E + x) = T(f) » x

Then the following three properties of T are equivalent:

§;bnsored by the United States Army undeyp Contract No. DARG29~75-C=0024 .,




(a) f,g€ C and f < g a.e. implies T(f) < T(g) a.e.,

N + +
() (T(f) = T(@) < |[(£-a7 | _ a.e. for f,g€ C,
L (Q)

€ e - @] < lle-qgll a.e. for f,g€ C .
L (Q

These results are proved in Section 1 where remarks about variations are also |

made. Simple but interesting examples are indicated in Section 2.

Section 1. The Proofs.

Proof of Proposition 1. Assuming that (1) holds we show (a) ==> (b) ==> (c) ==> (a).

Let f,g€ C. Then fvg =g + (f - g)+ € C by assumption and, if (a) holds,

T(fvg) - T(g) > 0. Moreover, T(f) - T(g) < T(fvg) - T(g). Thus we have

(T(F) - T(@) ' < T(Evg) - T(g) .
Using this and (1) yields

[ re) - @t < [ (r(fvg) ~T@) = [ (Fvg - @) = [ (£ -,
2 Q Q Q ’

and we have shown (a) ==> (b). That (b) ==> (c) is trivial for, assuming (b),

[ IT6) -1 |

[ -t + [ @@ -rEnt < f -t s [ -7
Q Q Q Q

Q

[ l£-q] .
a

+
Finally, if f,g€ c, £ > g and (c) holds, the identity 2s = |s| + s and (1) imply

]

+
2 [ (T(@) - T(£))

[ Irtg) - 76)] +[ (T(@ - T(£))
Q Q Q

| A

[la-fl+[@-6=0
Q Q

and so T(g) < T(f) a.e.

Proof of Proposition 2. Assuming that (2) holds we show (a) ==> (b) ==> (c) ==> (a).

Let f,g€ C. Then g + || (f - g)+” € C by assumption and

L (Q)
g+ |- q)+|| i > fvg a.e. Thus (a) and (2) imply
L ()




() =@ <@ -t L) - m@ = - @t a.e.
L ) L ()

which is (b). The implication (b) ==> (¢) is immediate as in the previous case.
To prove (c) ==> (a), let f < g a.e. Then using (2) and (c¢) with

r= |[(g- f’*” % = ||lg- £]| & we have
L (R) L (V)

rie) = mtg) + x| firte+ ) - 7@ ||
L () L (Q)

S

Hig=-g) +x2ll . =<»

L (Q)
This implies T(f) - T(q) < 0 a.e., which is the desired result.
Various generalizations of these results are possible. We next state one of some

interest. Let X, Y be a vector lattices and \ \\' be nonnegative linear functionals

xl
on X, Y respectively.
Proposition 3. Let CC X and f,g€ C imply fvge C. Let T : C » Y satisfy

(3) \Y(T(f)) = \x(f) foy- e g,

Then (a) ==> (b) ==> (c¢) where (a), (b), (c) are the properties:
(a) f,g€ T and f < g implies T(f) < T(q) ,
®) A (T - TN’ <\ (f - @h) for faec,

() AUy - r@ |y < (= a]

Moreover, 1f \\.(f\ >0 for f > 0, then (a), (b), (c) are equivalent.

The proof is the same as that of Proposition 1. Proposition 2 admits analogous
"vector-valued" generalizations. In particular, T may be a mappina

o~ - B N . »
T:CCL (M »1L (W) with distinct measure spaces 3, ', 1In another spirit, if
(@) 1in Proposition 3 is replaced by the requirement that T + Y1 be order preserving
+

for some y € R and (3) holds, then one deduces that

: + + + : e
\\,(T(H - T(g)) < (1 + y)\‘(f -qg) + y\xm = f) . If (2) in Proposition 2 18 replaced

+
by T(f + r) < T(f) + yr for every r € R. and some Yy ¢ R , then (a) implies that

+ 1
VIE) = THg)) < yll(f - \ﬂ.” - a.e. Similarly, i1f (1) is replaced by
L ()

D

|
!
i




[T em) < [T(6) +y[h for h>0 and some y ¢ R', then
Y

N 2

f (™H) - T <y j (£ - a)' it T is order preserving. These cases (and probably

W u
their vector-valued versions) occur in applications.

All the above could be reformulated in terms of the conditions satisfied by

Jh) = T(h ¢+ q) - T{(a) where g ¢ C is held fixed to obtain variants. For example,
+ ‘

if J preserves the integral, then J(h) < J(h ! for each h implies that

+ + f - r - i { r
fJ(h) < fh and |} J(h) < | h for each h which implies that | [0(h)| < | |h
2 2 R 3 Q Q
which in turn implies that J preserves the nonnegative (respectively, pnonpositive!

functions. We will refrain from more remarks of this sort.

Section J. Examples.
We antormally indicate a few examples, The oriain of these remarks was the

system of equations (called the Carleman equations)

which are to be solved subject to initial conditions

u(x,0) = u‘(x\
(3] s

vix,0) = v _{(x)
0

‘
where uo.vuf L AN . Assuming (as is the case: [4), [(v), [7]) that this

problem 1s solvable in a reasonable sense for u(t,x), v(t,x) we have (formally)
|
<y (u(t,x) + v(t,x))dx = f (ut * v )dx = f (-ux + \-x\dx = Q

dt R t R

and so

(6) f (it,x) + vit,x))ax = | n (x) 4 v (x))dx .
R R 5

1
Letting \ : L (R) X Ll(l) * R be given by

Vif,a) = [ (f + a)ax
R

{6) means that

8 ‘uvl)) = A ')
\("(U(uo \0\ v

-d-

]
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where S(t) 1s the semigroup associated with (d4), (5). That 1s,

S(L)(u\,.vo) = (u(t,*),v(t,*)). Hence, by Proposition 3}, 8(t) 1s order-preserving

1

. .
if and only if 1t 1s nonexpansive in LI(IR! x L (R) (and 1t 18 both).

We next briefly illustrate in a simple case the relation to [2]. Consider the

problem u_ ¢ t‘(u)x =0 where f : R » R 18 Cl. The Lax-Friedrichs' difference

t

approximation to this equation is

ntl n At n n 1 n n n
' A - U, = === (£({0 - Fy. N+ = (0 LB I 2U.)
Y § = 2am W) Wiag? ¥ 3 Wy * Yy 3
which we rewrite as
Uml = G(U")
where G maps sequences U = (U.)m to sequences according to
Juma
At \
3(U) . = U, — (f(U ) - ) N4+ =, + U - 2U.)
G j 3 A% ( (Lj‘l f(\j_1 3 (‘301 i-1 :
Let (1 be the space of summable sequences TR with the usual ordering,
j--.\\

a<0c<b, and C={U®€ 8 :acx U, < b for all j}l. Clearly
~ ~
DY 7 ) Rt (R
B | s ]
);:.—\\‘ _)"'—~\‘
: At

Moreover, G is clearly order preserving on ¢ 1if 1 > 3 jEtiEyl Zox At E <h,
Ax

Hence, by Proposition 1, G 1s also nonexpansive in this case.

Next consider the initial value problem

N
'u( + f(gradu) = 0, t>0, ¢ R ,
” {
N
u(0,x) = u‘(x), e R,
\

N ;
where f : R * R, From the form of (7) one expects that if S(t) s the associated

semigroup (see, e.a., [3], [5], [10]) then :l(U(u0 +r) = ::(Hu\‘ + v for each r,
and this is indeed the case. Hence we have a quite nontrivial mapping with the

- e i i { ‘N
property (2). It is both order preserving and nonexpansive in L (R, and one

property follows from the other via PFroposition 2. The results analogous to [2] for this

«“Sa




case are being developed, as ave analogous results for equations of the class

U, - Av(u) =« 0 where ¢ : R * R

often satisfies (1) oy 1ts generalilzations.)

18 nondecreasing. (The associated semigroup here

We offey nonincreasing rearrangements as our last example. lLet 11 be a measure

space with | the associated measure and Vv be a Borel measure on  (0,~  such that

r =+ vi(0,r))

18 a homeomorphism of (0,»), If

f > 0 is measurable on 1 then there

-
18 exactly one right-continuous nonincreasing function ¢ : (0O,w) » [0,«] for which

L]
wre (0, 1+ £ (¥) >a)=pfewe Q : £{0) > a)

-
for o > 0. This ¢
to  vl. Two particular cases of interest are

N
v({0,x)) = c“r where o

h b

L
P. 184), (9, p. 189)). In the latter case ¢

N
radial function on R

-
T(f) = £ . It 1s immediate from the definition that T 1is order preserving. Moreover,

+ +
for every continuous function g : R + R

~

18 called the nonincreasing rearrangement of ¢

v(i(O,r)) =

with the same distribution function as f.

{with respect

{Lebesque measure) and

N

18 the volume of the unit ball in R (see, e.9., [8,

can be regarded as a decreasing

Define

we have

(8) [ arienav = [ gHrau

0

N

since T(f) and f have the same distribution function. (Both sides of (8) may be

¥

D +
) Thus T takes L (u!‘ to Lp(v\ for

Moreover it 1s immediate from the definition that T(f + ¢) = T(f) + ¢ for ¢ ¢ R

1 S~ p s~ and preserves the integral.

+

Hence T 18 nonexpansive fyom Lp(u)' to Lp(v). for p= 1, In fact, if
(9) 1+ [Q,«) > {0,®) 1is convex, lower semicontinuous and  3{(0) = O ,
then

~®
(10} [ 3Ty - 1@ hrav

0
whenever f,3 > 0 and [ j(O)du, [ j(@)du < w.

Q W

of Brezis-Strauss [11.

-t

< f j\if - -)})dh
Y]

This follows from a variant ot a vesult

Ve g I




Proposition 4: Let N, &' be measure spaces with measures U, V respectively. Let
< sltion i :

1 + 1 U
K L tu * T V) satisty
f |y | £ | 1 .
(11) ! RE{f) = Kig)idy < § (£ - gildy fovr f.,g9 2 L (4)
.
and
) tell ‘ 1 +
(1) RAE) & UEH 2 a,e. v for fe L (u)
Lo
. 1 +
Then for each 3 as in (9) and f e L")
as ] Jimt)iay = | jtf)au .
N u
. . : 1 ¢
The idea of the proof is as follows: Let ¢t > 0, f e L™ (n) and set h = fAt,
+ .
Then h < t and so K{h) < t a.e. v by (12). Hence (K(f) - t) < (K({) = R{))

and so, by (11),

? i + . + »
[ (R(f) - v)av < [ R(E) - k) av < [ |€ - njap = f (£ - ©y'ay .

| ! u

Next one integrates this inequality with vespect to the measure di'(t) and uses

(Pproperly interpreted) the identaty

) (x) | (r = &) aj'(t) + 1*(0V)2
.\\
to find (13).
1 + w +
o apply Proposition 4 to prove (10) we fix g € L () L3R A A TY and set
K(f) = [T(f + @) - T(a)|. Then (11) and (12) follow from what we have shown above.
1 '

Thus (10) holds for £ € L (u) and g as above. For the general case, choose

~ SRS 1 +
£ .o ¢ L ta) L (u) mncreasing to s 9 a8 N = «, note that
n n
i ( {n =g [) C (Vi@  and use the dominated convergence theorem and Fatou's  lemma.

n

It seems unlikely that (10) 18 not in print, but we do not know a rvefervence.
R: Turner points out that it may be deduced from approximation by simple functions in
A straiwghtforward (but not simpler) way. Here 1t i1s exhibited as a special case ot
gqeneral facts., We alse felt 1t worthwhile to vecall the useful and simple ideas

represented by Proposition 4 and its proof, as they are perhaps not as well known as

they deserve to be.
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